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AN EXTENDED KANTOROVICH METHOD
FOR THE SOLUTION OF EIGENVALUE PROBLEMS*t

ARNOLD D. KERR

Department of Aeronautics and Astronautics, New York University, New York, N.Y.

Abstract—The paper presents an extended Kantorovich method for the solution of eigenvalue problems in partial
differential equations. The specific examples treated are: the vibrations of a rectangular membrane and the
stability of an elastic rectangular plate compressed in its plane. It is shown that for the membrane problems, the
generated expressions for the eigenvalues and eigenfunctions are identical with the corresponding exact solution.
For the clamped plate compressed uni-axially or bi-axially, problems which are not separable and for which no
exact solutions are available, the generated eigenvalues, based on a one term expression for the eigenfunction,
are shown to agree very closely with the relevant results found by other investigators. For plate problems which
are separable, the method generates the exact eigenvalues and eigenfunctions. It was found that in all treated
cases the final results are independent of the initial choice of the functions and that the iterative procedure
converges very rapidly.

INTRODUCTION

IN A recent paper A. D. Kerr [1, 2] extended the Kantorovich method by considering it
as only the first step of an iterative procedure. The suggested method was demonstrated
on the boundary value problem

V2®(x,y) = —2  inregion R 1
=0 on boundary B (2)

associated with the torsion of a rectangular elastic beam. It was found that the generated
one term approximation is independent of the initial choice, that the convergence of the
iterative procedure is very rapid, and that the first derivatives of ®, i.e. the shearing stresses,
agree closely with the corresponding values obtained from the exact solution.

Subsequently, A. D. Kerr and H. Alexander [3] used this procedure to solve the
boundary value problem

Viw(x, y) = q/D in region R (3)
d
w=0; alv =0 on boundary B 4)
n

associated with the clamped rectangular plate subjected to a uniform lateral load g. Also
in this case it was found that the generated one term solution is independent of the initial
choice and that the convergence of the iterative procedure is very rapid. The numerical
evaluation showed that the obtained deflection surface w agrees very closely throughout
the domain with relevant results obtained by other methods. It was also found that the

+ This research was sponsored by the Air Force Office of Scientific Research under AFOSR Grant
AF-AFOSR-813-67.
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accuracy of the obtained second derivatives, i.e. the bending moments, is sufficient for
most applications in engineering practice.

The purpose of the present paper i1s to demonstrate the applicability of the extended
Kantorovich method to eigenvalue problems, to show the relative simplicity of the resulting
analyses, as well as the high accuracy of the determined eigenvalues.

THE VIBRATIONS OF A RECTANGULAR MEMBRANE

Let us consider, as the first example, the transverse vibrations of a uniformly stretched
rectangular membrane which is attached along all four sides to a rigid boundary as shown
in Fig. 1. The natural frequencies and natural modes are obtained from the equations
(see [4] p. 249).
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u=>0 on B for all ¢ (6)

where u(x, y, 1) are the lateral displacements, a®> = Ty/p, Ty is the uniform tension field,
and p is the mass of the membrane per unit area. Setting u(x, y, 1) = v{x, y)T(t) and using
the method of separation of variables, we obtain the following eigenvalue problem for
v(x, ¥):

&% 0%

6?4-:3“7-24'/10:0 in R (7N

v =20 on B (8)

where 4 > 0.
In the following this eigenvalue problem will be solved by means of the extended
Kantorovich method using only a one term approximation.
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The equations of the iterative process are derived going out from the Galerkin method.
For a one term approximation v, the Galerkin equation may be written as

[ (o

assuming that vsatisfies the boundary condition (8). According to the extended Kantorovich
method the function v is assumed in the form

ij = fi(x)gj(y) (10

Svdxdy =0 9)

V=0
If g; is given a priori then
ovy; = g;0f; (11)

and equation (9) becomes

a d2 bd2g b
[ or]s2e| i1 golgae-o

The above equation is satisfied when

b 2 dZ b
U g; dy]dfﬁ[ dgz’g,d}]f, [ fgfd,v]f,:O. (13)

Noting that

bdlgj (dgj )b b(dg)2
war=52e) - | ¢ (14)
o dy* ¥’ dy “fo Jo \dy Y
and that because of boundary condition (8)
gf0)=0: g(bh)=0 (15)

and hence the integrated term in (14) vanishes, it follows that equation (13) may be written as

[ o] S #+ [ gar- [5) ar|s=o (16)

Similarly, if fi(x) is prescribed then

Svy; = fidg; (17)

and equation (9) is satisfied, when

U fzdx]d 2+[ f It dx_f”(%zdx}gjzo, (18)

Equations (16) and (18) are the ordinary differential equations of the iterative procedure.
As a first specific example let us extend the problem presented by L. V. Kantorovich
and V. I. Krylov [5]. As initial choice we assume

vio = fi(X)go(y) = fiy(y—b) (19)
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which satisfies the boundary conditions in (15). With this assumption equation (16) becomes

d2
bzggﬂxbz—lom = 0.

Assuming that
bt > 10

the general solution of equation (20) is

filx) = Ay, sin[(l«—«gﬁ))z x] + A4, cos[(ﬂ.—;}g)z x].

Boundary condition (8) yields the following conditions on f,
fi(0)=0:  fila) = 0.

From the first condition it follows that 4,; = 0. The second condition yields

. 1oy
A“SIH /V_F a :0

For a nontrivial solution to exist 4,, s 0, and hence

.10

Y
A B—z)a:nn n=12....

Thus the first approximation for the eigenvalue is

PR L 2+10
T g h?

and the corresponding eigenfunction is

Uio = A,;sin

fI«EC) w(y—b).
a

These are the results of the Kantorovich method.

We proceed now with the iterative procedure setting, in view of equation (27),

X
a

vy = filx)g(y) = sin(nf)gx(y).

Substituting the above expression in equation (18), it becomes

dzgl . nznz
e Kol Kl
Assuming that
nZn,Z
7 >

(20)

(25)

(29)

(30)
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the general solution of equation (29) is

2,24 nzﬁz 3
2:(y) = 44, sin[(l—naf ) y] +A’mcos[(2— p ) y‘J‘ (31

Substitution of equation (31) into the boundary conditions given in (15) and the
subsequent use of the condition for the existence of a nontrivial solution, yields the second
approximation for the eigenvalue

nry?  (mn\? n=12...
;111:(;) +('z;‘f) m=12,... (32

and the corresponding eigenfunction

vy = Al sin("—”f) sm(@). (33)
a b
It may be easily shown, by continuing the iteration procedure with
. [mn
vy = fa(x)g1(») = 12 sm(——b—X) (34)

that the eigenvalue in (32) and the corresponding eigenfunction in (33) are the final expres-
sions that this procedure generates. A comparison reveals that the obtained results are
identical with the exact solution. Thus, for the problem under consideration the method
generates the exact solution.

With reference to assumptions (21) and (30) it may be easily shown that when

n*xn?

Agé«? or }'S‘EE" (35)
the presented method does not yield any eigenvalues. Thus the obtained eigenvalues are
the only ones which this procedure generates.

As a second example let us modify the problem treated above by assuming that the
edge along x = a is free. The formulation of this problem is the same as before, except that
now the boundary condition along x = a is

a
P«] = 0. (36)
0X J(a.p)

The resulting eigenvalue problem for v(x, y) is

v P 0 iR 37

— ) =

PR v in 37
ov

w0, y) = 0: [~] =0 A
2x |t (38)

wx,0) = 0; W, by =0)

Proceeding as before it may be shown that the iterative equations (16) and (18) are
also valid for the present problem. The first step of the iterative procedure, with v, as
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given in (19), yields in view of the different boundary conditions on f,

d
fi(0) = 0; [i] =0 (39)
dx x=a
the eigenvalue
2n—1m1? 10
/110 = [——2&*] ‘Jr")”z n = 1, 2, - (40)
and the corresponding eigenfunction
.| @2n—1m
Vo= A, sm[(‘n——lz-x}y(y—b). (41)
2a
The second step with
1 2n—1inx
v = filx)ga(y) = sm[~—20 ]gl(y) (42)
yields the eigenvalue
Cn—-n1?> [m=\? n=12...
A = |: 2a ] +(T) m=12,... @3)

with the corresponding eigenfunction
2n—1
vyy = A}qsin (2n )—n—)f sin my . (44)
2a b

It may be shown by continuing the iterations that the eigenvalue in (43) and the eigen-
function in (44) are the final expressions that this procedure generates. A comparison
reveals that the generated results are, also for the present problem, identical with the exact
solution.

THE STABILITY OF A RECTANGULAR PLATE

In order to study the use of the extended Kantorovich method to a more difficult
eigenvalue problem, let us analyze the stability of an elastic clamped rectangular plate sub-
jected in its plane to a constant compression field, N, as shown in Fig. 2.

The pressure force at which the onset of buckling takes place, N,,, is determined (see for
example Ref. [6]) from the eigenvalue problem consisting of the differential equation

VAw+42V2w = 0 in R 45)

and the boundary conditions

(46)
—=0| -b<y<+bh
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ow (47)
— =0 —a<x< +a
dy
where w(x, y) is the lateral deflection,
it = % (48)
3?2
Vi = 5;5+6—yz~) (49)
64 (';4 64

and D is the flexural rigidity of the plate.
The equations for the iterative procedure are derived going out from the Galerkin
method. For a one term approximation w, the Galerkin equation may be written as

+a +b
f f (Viw+ 22V2iw)dwdx dy = 0 (51)
—a -b

assuming that w satisfies the boundary conditions given in (46) and (47).
According to the extended Kantorovich method we assume

wlx, y) = wij(x, y) = f(x)g[y) (52)

If g{y) is prescribed a priori then, proceeding as before, it follows that equation (51) is

satisfied when
+b 4f ) +b dg_, de
[J‘v gJ d :ld 4+ A f_ g} dy— 2f dy dy dx?
(o o
—1 22 2 dy— J = 0.
[/ f—b (d)’ g —p \dy? S
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Similarly, if f{x) is prescribed, equation (51) is satisfied when

[f 1t dx]d 44{ ,{ = dx—zj:(gé)zdr}ig,
_.[}hzﬁ*: ((%)‘dxm j*“ (diz,) Ig’_ =0 (54

Equations(53)and (54) are the two ordinary differential equations of the iterative procedure.
They will be used in the following to determine the eigenvalues and eigenfunctions of the
problem under consideration.

As a first approximation we choose. in accordance with (52),

wio = f1(x)goly) = fl(x)(_\"z —h?)? (55)

which satisfies the boundary conditions stated in (47). Substituting equation (55) into
equation (53) we obtain, after performing the integrations and dividing the resulting equa-

tion by b°,
4256 4f1 b2 256 256 2f1 2256 128
[b 315]d + [( T 105 a | W | e (56)

Equation (56) is a fourth order ordinary differential equation with constant coefficients.
Its solution consists of four linearly independent functions ™. The four values of m are
obtained from the algebraic equation

b4m4+b2[(lb)2——6}m2—[ (Ab)2~§;~] =0 (57)

Since the magnitude of (4b) is not known, the roots may be real, imaginary, or complex
Let us assume first, that equation (57) yields two real and two imaginary roots

m1.2 = ipl, m3,4 = i"l“%“’l" (58)
a a
This will be the case when
21
(Ab)? > 5 (59

The corresponding solution of equation (56) is

filx) = Ay Sinh(ﬂlg) + Ay, cosh|p, (60)

Al T e S
Xy b 2 2

In order to simplify the presentation, the following analysis will be restricted to the
determination of eigenvalues whose eigenfunctions are symmetrical with respect to the x
and y axes. Assuming the position of the coordinate axes as shown in Fig. 2. the determina-
tion of N, for a square plate becomes a special case of this analysis.

X .
«) + A3 sy
a

X
“)+A[4COS Xl*‘
a

where
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For these cases, we may write
X X

Substituting equation (62) into the boundary conditions stated in (46), or into theequivalent
ones

d
fi(+a)=0; (E}%) L 0 (63)

we obtain

Ay,coshp,+A,,cos%;, =0
12 £ 14 1 } (64)

Al2pl Sinhp]_A147€1 Sin%1 =0
The condition for the existence of a non trivial solution is
A=0 (65)

where A is the determinant of the coefficients. Equation (65) yields

nytgx, = —p,tghp, (66)
For a = b, the roots of equation (66) are shown in Fig. 3. They are
(Ab)1o = 13:2932, 40-0007, ... .. 67)
30 b
2.0 |-
—7L, tg X,
o -
13.28 40.00 / 887 158.0
o bt . ] xz ; i 5 1 Z ; 1 7;
0y 20 30 4}3 f 50 80 70 80 150 100 10 Iis
‘ |
2
o b I (\a) f‘ {
N
~2.0 ~P, tgh Pi/
-3.0

FiG. 3.

For the determination of N, for the square plate, only the first root is of interest. According
to equation (61) the corresponding values p, and x, are

py = 1:0046: 3, = 2-8814. (68)
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Determining A4 from the first of the equations in (64), we may write
X
Wig = Aw[cos xlcosh(,o1 )«cos,h 2 cos(xl H(V —b?y (69

where 4,, is an undetermined constant.

The obtained results are based on the assumption that equation (57) yields two real and
two imaginary roots as presented in (58). It should be noted that among the roots which
may exist, these are the only ones which yield eigenvalues for the problem under
consideration.

The next step in the iterative procedure is to assume

wyy = filX)g(y) = [COS Xy COSh(ﬂl x) —cosh p; cos(x;)]gl(v {70)

Equation (54) may be written as

d d%g
I: 431% dg41+a2E}~a)2Byxo"2B’1} “‘“”’“[( a)*By; —By,)g, =0 (71)

. / . rald’f\? :
Yo = J\ fx dX, By, = GV" a(‘d—‘— dx; By, = a“j—a (_d;c—zi dx. (72)

Noting that equation (71) is, except for the magnitude of the coefficients, of the same type
as equation (56), we assume as before, that the corresponding characteristic equation yields
two real and two imaginary roots.

where

+'%l +i5L (73)

This will be the case when (la)* > B),/B;;.

Proceeding with the iterations as done before it can be shown that, after performing the
initial iteration (the Kantorovich Method), the analysis reduces to the following iterative
scheme with n = 1 as starting index:

For n = 1 determine

B;O’ ;319 ;2 (74}
and then noting that
’ n N2 ’ 2 /{ 2 7 3
,0:1 — [Z{([(/a) _ :nljl [—':—1*(;1 )2 nl] 1l:( a) :11:!} (75)
x| a 2 "0 no 2 "o
and
B2
la)? > r= 76
(Aa)* > B, (76)

find the roots of
Ao 18 %, = — pnigh p. 7



An extended Kantorovich method for the solution of eigenvalue problems 569

With the obtained values for p,, x|, determine

B(n+1)07 B(n+1)1’ B(n+1)2 (78)
and then noting that
Pn+ 1} _ E{( [(),b)z__B(w 1)1]2+ [B(,H—l)l()b) B 1)2:!)é T [(lb)z _Bas 1)1]} g (79)
Hp+1 b 2 B+ 10 B+ 1y0 Bus )0 2 Bty

and

B
(b)? > 2 (80)
B(n+l)l
find the roots of
Hyr 1 8 Hns1 = —Pps1 18N Priy. (81)

Then, start next cycle by substituting n = 2 in (74) and so on. The B’ values are
(=302 .
o = f fidx = l: 2pn(03+%3) sinh 2p,, | cos? x,
(o7 —3x3) .
] 2
+[ +2x,,(p,f+xf} » |cosh’p,
+a df 2 (p2__ 2)
’ _ ,__'1 — — 2 _ n
nl J‘“a (dx) dx p,,[l T )smh Zp,,] cos? x,

-3
+x,§[l 2(:(;) p))sian,,]costh,,

+a de 2 (pz )
;o 3 Il dx = pt n n 2
n2 = d J_a (dxz) x p"[l+2ﬂn(Pn ) sinh 2,0,,]005 Ky

(x? +Spn)
+up| 1+
"[ 202 +#2)

(82)

) sin Zx,,Jcosh2 O

The coefficients

1 +b +b d
Bytno = Ef_b gz dy: Buiny = bf ( g") dy
b [d2g |2 (83)
Bn = bsf ( H) dV
(n+ 1)2 h dy2 )

may be obtained from (82) by the following substitution

B, Buys Bry = B(n+ o> B(n+ s B(n+ 12
(84)

Prs % = P> %
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In order to study the convergence of the iterative procedure, the problem was numeri-
cally evaluated when the domain under consideration is a square, a = b. For this case
P, = pyandx, = x . Foreachstep of the procedure, the first eigenvalue was determined
and the results are presented in the following table:

Kantorovich method

n 0 1 2 3
(2a)2, 13-1145 131138 131138
P 1-13918 1-13319 113318
P - 282430 2-82687 2-82687
(20 s 1 132932 131138 131138 131138
s 100464 113289 1-13318 113318
Hnt 1 2-88141 2-82699 2-82687 2-82687

It can be seen that the convergence is very rapid and that within the accuracy of the
presented calculations already the third step yields the final magnitude of the eigenvalue.
Noting equation (48}, it follows that the critical buckling load for a square plate is

D
Ne = 131138 (89)
or rewritten
2D
N, = 53148 —. 86
cr (2(2)2 { }

The corresponding buckling mode is

X X
pm«) —~cosh p,, cos (xmp”
a a

Wy = Ao[cos ¥, COsh

(87)
Y y
X [cos #. cosh (pmg) —cosh p, cos (’%g” .
where
o = 1-13318
p (88)
%, = 2-82687

and A, is an undetermined constant.

It is of interest to note that the obtained buckling load agrees very closely with the
corresponding result of G. I. Taylor [7] and O. H. Faxén [8], N, = 5304 72D/(2a)y*. The
difference is about 0-2 per cent.

As another example, which is also not separable and for which no exact solution is
available in the literature, let us determine the critical load of a clamped plate which 1s
compressed uniaxially as shown in Fig. 4.
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The critical load, N,,, is determined from the eigenvalue problem consisting of the
differential equation

2
V“w+% -‘g—lzv =0 inR (89)
X

and the boundary conditions given in (46) and (47). Restricting w(x, y) to a one term
expression and then proceeding with the iterations as done previously, we obtain for a
square plate the critical load

D
N, = 249129, (90)
a

The corresponding value obtained by Faxén [8] and by S. Levy [9] is N,, = 24-86 D/a’.
Thus, also for this example, the agreement is very close. The rather small difference of
about 0-2 per cent appears indeed negligible in view of Levy’s estimate that the possible
error in his numerical results is of the order of 0-1 per cent.

When two parallel edges of the plate are simply supported the problem is separable.
For these cases the extended Kantorovich method generates, using a one term expression
for the function, the exact results obtained by means of the M. Lévy approach.

CONCLUSION

For the treated problems, it was found that the extended Kantorovich method generates,
using a one term expression for the eigenfunction, the exact eigenvalues and eigenfunctions
where the conventional method of separation of variables is applicable. For the clamped
rectangular plate, which is not separable, this method generates a highly accurate first
eigenvalue, even when the eigenfunction is restricted to only a one term expression. It
was found that in each case the final results are independent of the initial choice of the
function and that in all treated cases the iterative procedure converges very rapidly.

Acknowledgement—The author wishes to acknowledge the assistance of Mr. Lotfi El-Bayoumy, graduate student,
for performing the numerical evaluations presented in the paper.
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AGcTpakT—B HacTosiulei paboTe AeaTcs paclumperHblil MeToa KaHTOPoBUYA peuteHus 3aaay 1Uis COBCTBEH-
HbIX 3HaveHUi B AM(depeHumalibHbIX YPABHEHUAX ¢ YACTHBIMU NPOU3BOAHBIMU. PaccMaTpusaoTcs ocobble
npumepsl: Bubpauus nNpaMoyronbHoi MeMOpaHbl U YCTORMUBOCTL YIPYIoi, IPAMOYTOIbHOW TUTACTHHKH,
cxaToil B ee nnockoctu. OKa3blBAETCS, YTO B 3anadye MeMOpaHbl HOJYYEHHBIC BbIPAXEHUs AJ1st cCoBCTBEH-
HBIX 3HAYEHMH M COOCTBEHHbIX (YHKUMA SABIRIOTCH TOKIAECTBEHHBIMH C COOTBETCTBYIOWIMM TOUYHBIM
pelienneM. [las cayuas 3auieMICHHON 1ACTUHKU, CKATOM B ONHOM W B ABYX HATIPaBIEHUSX , OKA3bIBACTCSH,
YTO B HEPA3AEIMMBIX 3AAYAX U JUISL KOTOPBIX HE TIONYYar0TCsl TOUHbIE PELLEHUS , BIBEIEHHBIE COOCTBEHHbIE
3IHAYEHUs, OCHOBAHHbIC HA OJHOM YjieHe BblpameHus Njis COOCTBEHHOM (MYHKLIMU, CXOOATCA O4EHb OIU3KO
C COOTBETCTBYIOWIMMU pe3yJbTaTaMu, MOMYYEHHbIMH APYTMMU uccreaosatenamu. [Juis oraenbhbix 3a1ay4
ILIACTUHKH, O1aroaps nNpeacTaBIeHHOMY METOLY , HOY4aOTCs TOYHbIE COOCTBEHHbIE 3HAYEHNUSA U COOCTBEH-
Hble GyHkunu. KoHcraTupyetcsi, YTO BO BCeX PACCMATPHBAEMBIX CllyyasiX, OCTATOYHBIE DE3yJIbTATbl HE
3aBMCAT OT HAYaNbHOro BbIOOPa GyHKuMi. TTpouece uTepauyy MPOUCXOAUT OYEHD BLICTDO.



